TURBINE POWER SYSTEMS CONFERENCE

February 25, 2002 Moody Gardens Hotel Galveston, Texas

Presentation topic: Technology Development Needs for Coal-Fired Power Systems

Ben Yamagata
Executive Director
Coal Utilization Research Council

Coal Utilization Research Council (CURC)

What is the Coal Utilization Research Council?

- Promotes coal utilization R,D & D
- Encourages industry/government partnerships to commercialize new coal technologies
- Coordinates activities with other coal stakeholders to insure an industry unified voice on R,D & D

Coal Utilization Research Council (CURC)

Who are the members of CURC?

Utilities as users of technology

Manufacturers of technology/equipment

Producers of coal

R&D technology developers & researchers (including state governments, universities & research institutions)

Coal is Abundant, Affordable & Clean

Natural Gas
More than
164 Tcf

168 Quads

5,839 Quads

Oil 21 billion barrels

122 Quads

Coal: Abundant, Affordable & Clean

Stable Coal Prices Erratic Natural Gas Prices

Data Sources: EIA Short Term Energy Outlook, July 2001 EIA Annual Energy Outlook 2001

Coal: Abundant, Affordable & Clean

Since 1970, coal-based electric generation has increased dramatically, yet emissions from coal-based power plants have declined steadily.

Projection of U.S. Electric Power Generation and Fuel Mix

19993.2 Trillion kWh 69% fossil fuels

Coal's Resurgence in Electric Power Generation

Retrofit & Repowering Potential for Coal? Substantial!!!

Coal Nameplate Capacity
321 GW
44% of Total

240 GW (75%) of Fleet Capacity
Is Prime Target For
Increased Capacity Retrofit
(40 GW potential in 3 years!)

80 GW (25%) of Fleet Capacity
Is Prime Target For Repowering
With Cleaner, Higher
Efficiency Coal Technologies

Sources: National Coal Council

CHALLENGES TO USE OF COAL

- Competitively-priced for electricity generation
 -- coal vs. natural gas
- Costs & time to construct -- permitting & construction
- Environmental challenges/regulations
- NIMBY ("not in my backyard")
- Low public opinion

Environmental Challenges: Air & Water

Sulfur Dioxide

SO2 Air Quality

Acidification

Fine Particles

Regional Haze

Nitrogen Oxides

Ozone formation

Fine Particles

Acidification

Regional Haze

Carbon Dioxide

Climate Change

Mercury

Toxic bioaccumulation

Water

• ???

Environmental Regulatory Challenges

Challenges to the Use of Coal

- If coal is, or perceived to be, a dirty fuel that harms the environment or the health of people;
- If coal is not cost competitive with other alternatives;
- If other fuels (e.g. natural gas) are as readily available as coal;
- Then, coal use for power generation will be more difficult

To insure that coal can meet these challenges now and in the future

- Technology is essential
- Technology must be ---
 - Cost competitive
 - Meet environmental standards
- Technology becomes a means by which ---
 - to insure coal's competitiveness
 - to remove environmental issues as a concern for future coal use

Challenges to the Use of Coal:

Evolution of Coal-Fired Power Plants

To meet the Challenges to the Future Use of Coal: A clearly defined technology development program

CURC's Technology Roadmap

- Guides public/private cooperative efforts to develop, demonstrate and deploy technologies needed to achieve interim & long term technology goals for using coal
- Identifies near-term technologies that are
 - building blocks or critical components needed to insure success in the development of longer term technologies
 - high risk but high pay-off technologies that will insure cost effective environmental compliance
- Targets longer term technologies needed to insure that
 - new coal powerplants will emit de minimus or zero emissions
 - cost-effective methods are available to capture/sequester CO₂

Performance Targets for Coal Generation

(Performance Targets assume technologies in 2010 & 2020 are commercially available but not yet in widespread use)

Performance Target	Today	2010	2020
Capital Cost, \$/kW	900 - 1300	900 - 1100	1000-1500*
Efficiency, %HHV	40	45	45 - 60
SO2, removal %	95	97	99
No _x lbs/mmbtu	0.1 - 0.3	0.08	0.05
HAPs (hazardous air pollutants)	define goals	meet goals	meet goals
Waste Utilization, %	15 - 30	50 - 75	100
Overall Emissions		Significant Reductions from Today's Technology	Deminimis Emissions

^{*}The higher capital cost range includes installation/application of commercially-available CO2 sequestration technology; no such cost-effective control technology is commercially available in the 2010 timeframe although indirect sequestration techniques (e.g. carbon sinks) may be available.

© Coal Utilization Research Council, 2001

The end results of a successful Advanced Coal Technology Program

- **By 2010** commercially available technology that will enable
 - existing coal based electricity generation powerplants to achieve cost-effective compliance with environmental requirements (e.g. SO2, NOx, PM, mercury)
 - the next generation of coal fired powerplants to be more efficient (less CO₂ emitted); cost competitive (with natural gas); and, environmentally superior to today's technology

The end results of a successful Advanced Coal Technology Program

- **By 2020** commercially available technology that will enable
 - cost-competitive electricity generation
 - production of chemicals or fuels from coal
 - virtually no emissions of conventional pollutants (SO2, NOx, PM, Hg) from coal use
 - "first-of-a-kind" commercial scale technology demonstrations able to capture and sequester
 CO₂ for commercial application after 2020

CURC HIGHEST PRIORITY TECHNICAL ISSUES OF COAL-FIRED POWER GENERATION RD&D

Technology Platforms	RD&D Issues	Time Frame and RD&D Funding (Public & Private) Million US Dollars	
		2000-2010	2010-2020
Existing Power Plants	 Reduce Hg and other HAPS to levels required Evaluate low NOx burners to achieve 0.1lb. NOx/MMBtu Increased use of solid waste Integrate SO2 removal and particulate control to > 99% 	684	750
Advanced Combustion- Based Steam Power Plants	 Higher temperature materials for boilers and steam turbines Design of plant components and systems Component testing under anticipated operating conditions 	1248	1452
Gasification/Hybrid Power Plants	 High pressure solid feed injection Slip stream testing of fuel cells Fuel cell development/testing 1800F metallic heat exchangers Gasifiers for high moisture and ash coals Enhanced monitoring of trace elements Char combustion and gasification 	2100	2200
Coal Liquid Fuels and Chemicals	 Fuels and Chemicals Enabling Research to develop New Technologies System Optimization Hydrogen Production via gasification 	575	591
CO2 Management	 Development and demonstration for combuseparation Development and demonstration for gasification separation Fixation/reuse and geological, terrestrial, and ocean sequestration 		1750
TOTAL RD&D COSTS		5,857	6,743
TOTAL OVER 20 YEARS			12,600

Technology Roadmap: Coal Gasification Technology Needs

- High Pressure Solid Feed Injection
- Slip Stream Testing of Fuel Cells
- Fuel Cell Development/Testing
- 1800F Metallic Heat Exchangers
- Gasifiers for High Moisture and Ash Coals
- Enhanced Monitoring of Trace Elements
- Char Combustion and Gasification

Technology Roadmap: Estimated Costs to Complete Coal Gasification R,D & D

	R&D	DEMO	
	(musd)	(musd)	
2000-2010	1400	700	
2010-2020	450	1750	
Subtotal	1850	2450	

TOTAL: \$4,300

CURC's Coal Investment Strategy

Road to commercialization

Technology Development

R&D

Robust Technology
Development
Program
80/20 Gov't
financial
assistance

Commercial Readiness

Demonstrate
\$2.0 B Clean
Coal Power
Initiative
50/50
cost share

Market Penetration

Deploy

Tax incentives

Favorable regulatory climate

No Growth Investment Trend by Government

Fiscal years (000 thousands)

Enacted

CCT (Annual Apportionment)

Downward Investment Trend By Utilities

Source: EPRI Roadmap

Technology R&D to Commercialization

Environmental Regulatory Challenges

Government's Role

- Promote technologies that are responsive to public needs
- Promote fuel diversity and reliability of affordable supplies
- Share technical and financial risks of technology development required to meet public needs and promote public/private partnerships

National Electricity and Environmental Technology Act, S. 60 and H.R. 2323

Title I

- Accelerated R&D for new and existing coal-based generation facilities
- Power Plant Improvement Initiative

Title II

- Tax credits for emission reduction and efficiency improvements on existing coal-based generation facilities
- Regulatory incentives

- Title III

- Tax credits for early commercial applications of advanced clean coal technologies
- Regulatory incentives
- Risk pool

- Title IV

 Extension of Title II and III tax credits to public power, rural electric cooperatives and government facilities

Power Plant Improvement Initiative Precursor to CCPI:

- Congressionally mandated redirection of \$95 Million of previously appropriated clean coal technology funds
- Objective: Electricity reliability with near-term technological solutions for coal-fired electric power generation
- 24 Proposals, 8 projects selected >\$110 Million Projects
 - Emissions control strategies 5 projects
 - Advanced control schemes 2 projects
 - Waste handling/reduction 1 project

The Clean Coal Power Initiative (CCPI)

- Cost-shared partnership between the industry and government to provide early demonstrations of advanced coal-based, power generation technologies
- The goal is to accelerate commercial deployment of advanced technologies. This ten-year initiative will be funded at a total federal cost-share estimated at \$2 billion with matching industry cost-share of at least 50%
- First solicitation to be issued February, 2002; submissions June, 2002; selections December, 2002

How does CURC insure completion of the Technology Roadmap?

- #1. Agreement among the key players
- #2. Adequate funding & other legislative authorities to undertake necessary R&D, demonstration and deployment projects
- #3. Industry-led partnerships with DOE, national laboratories, state programs & universities
- #4. Discouragement of actions that preclude timely development & use of technologies

#1 - Agreement among the key players

 The Roadmap document is used to find concensus among CURC members, the Department of Energy (DOE), the White House, Congress and other interest groups & stakeholders

#2 - Adequate Funding and Legislative Authorities

- CURC has identified total estimated costs to complete the Technology Roadmap
- House energy bill (HR4) and Senate energy bill (S. 1766) includes \$160 to \$175 million per year for coal R&D
- House energy bill (HR4) and Senate energy bill (S. 1766) includes 10 year and \$2.0 billion clean coal demonstration program
- House energy bill (HR4) includes \$3.3 billion in tax incentives; Senate bill includes \$1.9 billion in tax incentives

#2 - Adequate Funding and Legislative Authorities

House energy bill passed the House in August, 2001 --

\$500 million over three years for coal R&D program

\$2.0 billion/10 years for coal demonstrations using CURC

80% of demonstration funds directed to gasification

\$3.3 billion tax incentives for limited number of advanced coal utilization projects

Senate energy bill (S. 1766) being debated by the Senate --

\$2.5 billion 5 year authorization for fossil energy R&D of which about 40% is coal based

\$2.0 billion/10 years for coal demonstrations tied to Vision 21 objectives and targets

lignite & precombustion technologies with emphasis on gasification & carbon sequestration

\$1.9 billion tax incentives for limited number of advanced coal utilization projects

#3 - Industry-led partnerships

- CURC Technology Roadmap assumes public/private cost share demonstrations
- Support President's \$2.0 billion clean coal initiative
- Government must have authority to contract for entire amount of federal share in a multiyear & multi-million dollar demonstration project
- \$2.0 billion program should focus upon demonstrations for subsequent widespread use

#4 - Comment on actions that could preclude development

- Identify regulations that will preclude or enhance development or use of new technologies
- Comment upon proposed actions in context of impacts upon technology development and use

For More Information:

Contact:

Coal Utilization Research Council
1050 Thomas Jefferson Street, N.W., #700
Washington, DC 20007

www.coal.org